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ABSTRACT 10	

With increasing demands for ocean color (OC) products with improved accuracy and 11	

well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall 12	

estimated errors into their primary components. Amongst various contributing elements 13	

(e.g., instrument calibration, atmospheric correction, inversion algorithms) in the 14	

uncertainty of an OC observation, less attention has been paid to uncertainties associated 15	

with spatial sampling. In this paper, we simulate MODIS and VIIRS OC products from 16	

30m resolution OC products derived from the Operational Land Imager (OLI) aboard 17	

Landsat-8, to examine impacts of spatial sampling on both cross-sensor product 18	

intercomparisons and in-situ validations of Rrs products in coastal waters. The simulations 19	

were carried out for OLI scenes “scanned” for one full orbital-repeat cycle of each ocean 20	

color satellite. While some view-angle dependent differences in simulated Aqua-MODIS 21	

and VIIRS were observed, the average uncertainties (absolute) in product 22	

intercomparisons (due to differences in spatial sampling) at regional scales are found to 23	

be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the Rrs(443), Rrs(482), Rrs(561), 24	

Rrs(655), [Chla], Kd(482), and bbp(655) products, respectively. It is also found that, 25	

depending on in-water spatial variability and the sensor’s footprint size, the errors for an 26	

https://ntrs.nasa.gov/search.jsp?R=20170005488 2020-05-09T21:05:55+00:00Z
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in-situ validation location in coastal areas can reach as high as ±18%. We conclude that 27	

a) expected biases induced by the spatial sampling in product intercomparisons are 28	

mitigated when products are averaged over at least 7𝑘𝑚×7𝑘𝑚 windows, b) VIIRS 29	

observations, with improved consistency in cross-track spatial sampling yields more 30	

precise calibration/validation results than MODIS, and c) use of a single pixel centered 31	

on in-situ coastal sites provides an optimal sampling size for validation efforts. These 32	

findings will have implications for enhancing our understanding of uncertainties in ocean 33	

color retrievals and for planning of future calibration/validation exercises.   34	

1. INTRODUCTION 35	

Following four decades of research and development, ocean color (OC) products 36	

from spaceborne remote sensing instruments now play a critical role in the management 37	

and monitoring of coastal ecosystems, which are under increased stress due to human 38	

population growth in coastal areas and associated anthropogenic impacts such as 39	

pollution and agricultural run-off (McGranahan et al. 2007; Nixon 1995; Vitousek et al. 40	

1997; Vörösmarty et al. 2000). Repeatable, timely, and reliable OC products provide a 41	

viable and efficient tool for monitoring of these coastal ecosystems. Coastal OC products 42	

provide a synoptic view of coastal ecosystems at an instance of time and when 43	

assimilated with coupled hydrodynamic-ecosystem coastal models (Allen et al. 2008; 44	

Gohin et al. 2005; IOCCG 1997; Natvik and Evensen 2003; Ouillon et al. 2004) allow for 45	

nowcasting and forecasting of environmental conditions to aid in hazard mitigation 46	

efforts (e.g., occurrence of harmful algal blooms). Within the suite of OC products 47	

distributed by NASA, the remote sensing reflectance (Rrs; defined as the ratio of water-48	
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leaving radiance and the total downwelling irradiance just above the surface) plays a 49	

central role in determining the optical and biogeochemical properties of coastal oceans.   50	

These observations and products, however, come from various satellite sensors with 51	

known, partially known, or unknown uncertainties in their radiometric observations or 52	

derived geophysical products. These sensors and their processing approaches are 53	

managed by various space agencies (http://www.ioccg.org), and despite international 54	

efforts to coordinate satellite ocean color programs (e.g., http://ceos.org), the derived 55	

products can be expected to differ due to uncertainties associated with sensor design and 56	

calibration and geophysical retrieval algorithms. Examples of satellite ocean color 57	

sensors are the Sea-viewing Wide Field-of-view Sensor onboard Orbview-2 (McClain et 58	

al. 2004; O'Reilly et al. 1998), the Moderate Resolution Imaging Spectroradiometer 59	

(MODIS) onboard both Aqua and Terra platforms (Esaias et al. 1998), and the recently 60	

launched Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi 61	

National Preparatory Partnership (SNPP). To ensure climate-quality products and 62	

consistent data record, the OC products are validated against in-situ observations, and 63	

individual satellite records are compared over their common mission overlapping periods. 64	

Each of these comparison methods carries unique uncertainties.  65	

The in-situ Rrs measurements are commonly made during research cruises or at 66	

stationary field stations (Antoine et al. 2008a; Zibordi et al. 2009a; Zibordi et al. 2009b). 67	

The ocean color component of the AErosol RObotic NETwork (AERONET-OC) is a 68	

good example of an internationally coordinated automated network of radiometric 69	

observations in coastal areas (Zibordi et al. 2009b). The sources of uncertainties in such 70	

field validation efforts are attributed to a) the instrument calibration (Antoine et al. 71	
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2008a; Clark et al. 1997; Mueller et al. 2004), b) the post-processing techniques (Zibordi 72	

et al. 2004), c) differences in the spectral sampling of the in-situ instruments and that of 73	

the OC sensor (Wang 1999), and d) the spatial representativeness of the in-situ 74	

observation (Mélin and Franz 2014). 75	

The uncertainty in intercomparisons of OC-derived Rrs products, however, 76	

corresponds to a) the sensors’ radiometric performance on-orbit and the strategies 77	

employed for vicarious calibration (Bailey et al. 2008; Franz et al. 2007; Zibordi et al. 78	

2015) b) the atmospheric correction (Gordon 1997; Müller et al. 2015), c) differences in 79	

spectral/spatial sampling, and d) the observation characteristics, i.e., angular 80	

dependencies, including bidirectional reflectance distribution function (BRDF) effects 81	

(Meister et al. 2012; Morel et al. 2002; Morel and Gentili 1996). This is further 82	

complicated if a higher-level product intercomparison (e.g., chlorophyll-a, inherent 83	

optical properties) is desired (Lee et al. 2010; Wang et al. 2005). The OC products 84	

obtained from different sensors are often compared either over open oceans (Franz et al. 85	

2005; Hu et al. 2013) or coastal waters (Barnes and Hu 2015; Hu and Le 2014; Ladner et 86	

al. 2014; Mélin et al. 2011) to examine consistency amongst satellite observations and 87	

detect any abnormal trending. In addition, various techniques have been proposed to 88	

merge (fuse) different OC products (Maritorena et al. 2010; Maritorena and Siegel 2005; 89	

Mélin et al. 2011; Mélin et al. 2009) to build comprehensive datasets less prone to spatial 90	

and temporal gaps. 91	

Among the sources of uncertainties for in-situ OC product validations (or calibration) 92	

and cross-sensor intercomparisons, less attention has been paid to the characterization of 93	

the impact of inherent in-water spatial variability and its relevance to sensors’ spatial 94	
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sampling. Instead, efforts have been made to avoid or minimize the impact of spatial 95	

sampling through various statistical analyses (Bailey and Werdell 2006; Mélin et al. 96	

2007; Moore et al. 2015). One possible reason for the lack of prior research on the 97	

uncertainties induced by differences in spatial sampling is the inability to decompose the 98	

bulk uncertainty/bias into its components noted above. Bailey and Werdell (2006) 99	

suggested performing a statistical test within 5×5-pixel boxes centered on the in-situ 100	

matchups, where the coefficient of variation (CV; the ratio of standard deviation and 101	

mean) of valid pixels is evaluated. Some other researchers have reported use of 3×3-102	

pixel boxes to analyze spatial variability at coastal sites (Zibordi et al. 2009a). Zibordi et 103	

al. (2006) asserted that the error in the representativeness of in-situ measurements could 104	

generally be treated as a random error, which can be minimized by increasing the sample 105	

numbers and averaging over time. The statistical variability observed in this manner is a 106	

combination of spatial variability and temporal variability, where the latter may be 107	

associated with the instrument calibration or algorithm errors. A common uncertainty 108	

goal for ocean color missions is to retrieve remote sensing reflectance with accuracies 109	

better than 5% in the blue channels over the open ocean (Hooker et al. 1992). 110	

Nevertheless, the reported biases for different coastal systems range from ±2% to ±35% 111	

in Rrs products (Moore et al. 2015; Zibordi et al. 2009a; Zibordi et al. 2012). Moore et al. 112	

(2015) reported bias values (for SeaWiFS and Aqua MODIS) larger than those published 113	

in Zibordi et al. (2012) over optically complex waters. The appreciable discrepancies in 114	

the results were due to the differences in the quality-control of the in-situ matchups. 115	

Zibordi et al. (2012) showed that the differences in Rrs products (satellite-derived versus 116	

in-situ) increase with the increase in the solar zenith angles and aerosol optical thickness.  117	
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Furthermore, the Group on Earth Observations (GEO), the Committee on Earth 118	

Observation Systems (CEOS) and its working groups, together with the International 119	

Ocean Colour Coordinating Group (IOCCG) are leading efforts in providing traceable 120	

measurements with associated uncertainties to the user community. For a full treatment 121	

of the error budget, it is desired that the uncertainties be specified at the component level, 122	

i.e., instrument, atmospheric correction, spectral/spatial sampling error, inversion 123	

algorithm errors, etc. For instance, for in-situ validations, both in-situ instruments 124	

(Antoine et al. 2008a; Hooker and Maritorena 2000) and the OC sensor should have 125	

traceable, and meaningful total uncertainty budget (Chander et al. 2013).  126	

The present research provides a full and unique analysis of the impact of sensors’ 127	

spatial sampling (and their footprint sizes) on uncertainties corresponding to a) product 128	

intercomparisons at regional scales and b) in-situ validation practices at coastal ocean 129	

sites (local scales). In order to isolate the uncertainties to a sensor’s spatial sampling, we 130	

follow a simulation approach. Our focus is to model Terra MODIS (MODIST), Aqua 131	

MODIS (MODISA), and VIIRS OC products at regional and local scales using the 30m 132	

OC products derived from the Operational Land Imager (OLI) onboard Landsat-8 (Irons 133	

et al. 2012). To assess the impact of spatial sampling on satellite product 134	

intercomparisons, the simulations are performed on a daily basis for 30 (globally 135	

distributed) OLI scenes for a 16-day orbital repeat cycle of Aqua, Terra, and SNPP. Then, 136	

simulated MODISA products are independently compared against a) simulated VIIRS 137	

and b) simulated MODIST products. To simulate the impact on in-situ 138	

calibration/validation efforts, the OC products (MODISA, MODIST, and VIIRS) are 139	

simulated with more than 100 OLI scenes over eight different known in-situ stations 140	
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(covering various environmental conditions) for a similar orbit cycle as above. The OLI 141	

observations surrounding the stations represent the “truth” and are employed to examine 142	

the matchup quality against the simulated coarse resolution OC products. With this 143	

approach, the OLI-derived OC products and their spectral contents form the basis of the 144	

simulations.  145	

The following section (Section 2) elaborates on the necessary steps pursued to 146	

simulate OC products from relatively fine-resolution OLI products. Section 3 contains 147	

results associated with uncertainties in product intercomparisons and in-situ validations, 148	

which is followed by the discussions in Section 4. In the conclusion section, we make 149	

recommendations for improving uncertainty assessment of OC products and provide 150	

guidelines for future developments.   151	

2. METHODS 152	

The VIIRS instrument aboard SNPP was launched in 2011 to pursue the heritage 153	

global measurements made by MODIS on Aqua and Terra. Although VIIRS shares 154	

similar operational and climate science requirements with MODIS, it has notable 155	

differences in design, calibration, and onboard processing (Baker 2011; Cao et al. 2013). 156	

MODIS is a rotating mirror, which sweeps one scan across track while projecting it onto 157	

10 square detectors (1km ocean bands). In contrast, VIIRS is a rotating telescope with a 158	

half-angle mirror, which projects one sweep of scan onto 16 rectangular detectors, i.e., 159	

750m Moderate (M)-bands. The Aqua and SNPP missions are both in ascending orbits 160	

crossing the equator around 13:30 local time, while Terra (similar to Landsat-8) is in a 161	

morning orbit with nominal 10:30 equatorial crossing time.  162	
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The projected area of a detector (square or a rectangle) on the ground represents an 163	

ideal spatial sample. However, the extent within which an instrument views (and 164	

samples) a spot on the ground is commonly larger than the projected detector area due to 165	

imperfect optics, jitter, electronics, and post-processing (Holst 2008; Schott 2007). The 166	

spatial sampling function is recognized as the point spread function (PSF). The overall 167	

PSF of an imaging system is the convolution of the above-noted, component-specific 168	

PSFs. The overall spatial performance is specified by the PSF(𝑥,𝑦), which is the product 169	

of the measured line spread functions along-track (𝑦) and along-scan (𝑥). For a pair of 170	

MODISA-VIIRS or MODIST-MODISA daily observations/products, each instrument 171	

views a target of interest from a different vantage point, which yields varying projected 172	

sampling area, i.e., the ground sample distance (GSD). The GSD is commonly defined at 173	

the Full-Width-Half-Maximum (FWHM) of the PSF (Schott 2007). The size and the 174	

shape of a footprint (one spatial sample) of an optical imager is a function of the orbit, the 175	

viewing geometry (line-of-sight), and the instrument effective spatial performance. The 176	

spatial performance is commonly characterized prior to launch (Lin et al. 2013) and is 177	

monitored commonly in the frequency domain throughout the mission either through 178	

onboard measurements (Xiong et al. 2006) or through observations of reference targets 179	

(moon, uniform edges, etc.) (Xiong et al. 2004).  180	

When comparing two OC products at the swath level, the differences due to spatial 181	

sampling largely depend on the spatial heterogeneity of the site, i.e., pixel/scene content. 182	

Similarly, the fidelity of an in-situ matchup is highly affected by the spatial uniformity 183	

around the site. In the following, we describe the simulation procedure implemented for 184	

different OLI scenes representing distinct coastal water conditions to obtain reliable 185	
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statistics on the extent of the impact of spatial sampling on coastal OC products. A 186	

thorough description of the procedure is first given for the regional product 187	

intercomparisons followed by a short explanation of the simulations implemented at in-188	

situ sites.  189	

2.1. Regional Simulations 190	

2.1.1. Retrieval of Rrs Products from OLI 191	

The OLI onboard Landsat 8 has been shown to considerably outperform previous 192	

generation of Landsat sensors when studying aquatic systems (Gerace et al. 2013; 193	

Pahlevan and Schott 2013). This is because of its improved SNR, the 12-bit radiometric 194	

resolution, and the addition of the new 443-nm channel (Pahlevan et al. 2014; 195	

Vanhellemont and Ruddick 2014). The OLI Level-1 data products (TOA reflectance) 196	

were obtained from the USGS web portal (http://glovis.usgs.gov/). In order to provide 197	

30m OC products, the OLI data were processed using the SeaDAS package (Franz et al. 198	

2015). The calibration gains obtained via cross-calibration at the top-of-atmosphere 199	

(TOA) reflectance domain were applied to the original OLI observations (Pahlevan et al. 200	

2014). However, it should be emphasized that the absolute product accuracy of the OLI 201	

products are not critical in our study. What is important is to obtain relative in-water 202	

spatial features present in various environmental conditions. Owing to the non-zero 203	

reflectance in the near-infrared (NIR) portion of the spectrum, we used two different 204	

atmospheric corrections (ACO) and chose the OLI products with more valid and 205	

smoother products based on analyzing the standard deviations for all valid pixels. The 206	

ACO was implemented using a) the combination of the two short-wave infrared (SWIR) 207	

bands (Vanhellemont and Ruddick 2015) and b) the combination of NIR-SWIR (865nm-208	

2201nm) with the iterations on the NIR channel to account for non-zero reflectance 209	
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(Bailey et al. 2010). In these techniques, the aerosol model selection is carried out using 210	

Rayleigh-corrected SWIR or NIR-SWIR reflectances. Prior to the aerosol-model 211	

selection, the input Rayleigh-corrected reflectances (within the NIR and SWIR channels) 212	

were smoothed using a 5×5 averaging filter to increase effective SNR (Gerace et al. 213	

2013).  For the product intercomparison, 25 OLI cloud-free scenes (globally distributed 214	

as shown in Fig. 1) were processed. The preliminary products over high-latitude areas 215	

and turbid atmospheric conditions showed noisy Rrs retrievals. This is attributed to the 216	

noisy nature of the Rayleigh-corrected reflectances (even after filtering) leading to error 217	

in aerosol model selection (Franz et al. 2015). Therefore, the OLI-derived Rrs products 218	

were further passed through a 3×3 median filter to remove residual noise. This, however, 219	

reduces the inherent resolution of OLI data. At this point, the OLI-derived Rrs products 220	

are supplied to the simulation process as described below. The retrieval of secondary 221	

products, including chlorophyll-a ([Chla],(O'Reilly et al. 1998)), diffuse attenuation of 222	

downwelling irradiance at 490nm (Kd(490),(Mueller 2000)), and particulate 223	

backscattering at 655nm (bbp(655), (Lee et al. 2012)) will be derived (Section 2.1.3) from 224	

the simulated coarse-resolution Rrs products (Lee et al. 2012). 225	

2.1.2. Implementation 226	

To simulate MODIS (MODIST and MODISA) and VIIRS Rrs products using OLI-227	

derived Rrs products, the spatial sampling function (PSF) and the (per-observation) line-228	

of-sight information of the sensors are needed.  229	

2.1.2.1. PSF Modeling  230	
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As described, the PSF is essentially a 2D distribution function that weighs the 231	

incoming surface-reflected (or emitted) radiance. For the purpose of this study, the Line 232	

Spread Functions (LSFs) measured during the pre-launch characterization of MODIS and 233	

VIIRS were employed (Barnes et al. 1998; Lin et al. 2013). Note that, due to inherent  234	

 235	
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SeaWiFS	Global	Biosphere	[Chla/NDVI]	map:	Courtesy	of	http://oceancolor.gsfc.nasa.gov	

Fig.	1.	The	sites	(indicated	by	boxes)	where	OLI	scenes	are	processed	to	Level-2	OC	products	for	
intercomparisons	of	products	at	regional	scales	(Section	2.1).	For	these	locations,	the	MODISA,	MODIST,	and	
VIIRS	OC	products	were	simulated	according	to	their	corresponding	viewing	geometries	from	DOY=1	to	DOY=16	
in	2015.	The	red	dots	denote	the	locations	where	simulated	matchups	were	produced	and	analyzed	(Section	2.2).		

Along-track	 Alon
g-sca

n	
Along-track	 Alon

g-sca
n	

a) b) c) d) 

Fig.	2.	The	band/detector	average	point	spread	functions	(PSFs)	shown	for	a)	MODIS,	b)	VIIRS	near-nadir	zone	(PSF-V3g),	c)	
VIIRS	mid-range	zone	(PSF-V2g),	and	d)	VIIRS	edge-of-scan	zone	(PSF-V1g).	Note	that	it	is	assumed	that	the	along-track	
response	is	rectangular	(ideal	response).	All	the	functions	have	unit-area.	The	coordinates	are	in	arbitrary	pixel	units.	
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similarities in shape, only one set of LSF was utilized for MODISA and MODIST. The 237	

LSFs had been characterized for each detector in each band. In general, the MODIS 238	

along-scan LSFs, i.e., LSF(𝑥), can be approximated as triangular functions (Wolfe et al. 239	

1998).  240	

For VIIRS, however, the onboard aggregation yields different along-scan LSFs for each 241	

aggregation zone (Cao et al. 2014). VIIRS has been designed with rectangular detectors 242	

(with the smaller dimension along-scan) to allow for aggregating (averaging) multiple 243	

samples. At near nadir scan angles (𝛼 < 31.72°) every three pixels are aggregated, in 244	

mid-range angles (31.72° < 𝛼 < 44.86°) every two pixels are aggregated, and at the 245	

edge of the scan (𝛼 > 44.86°) no averaging is implemented. This scheme provides near-246	

uniform sampling of the Earth surface in the along-scan (𝑥) direction and reduces the 247	

“pixel growth” at the edge of the scan to less than 2.2× the linear dimension of the nadir 248	

pixels  (Fig. 8 in Cao et al. (2014)). The MODIS along-scan samples at the edge of the 249	

scan, however, are nearly five times larger than those at nadir. On the other hand, at the 250	

edge of the scan, the size of the MODIS and VIIRS along-track footprints are very 251	

similar, i.e., ~ twice larger than the footprint sizes at nadir-viewing angles (Wolfe et al. 252	

2013). For an accurate simulation of the effects of spatial sampling on OC products, the 253	

four different LSF 𝑥  (Fig. 2) are modeled to represent the spatial sampling of MODIS 254	

and VIIRS. The along-scan LSFs, as a result, are modeled as the summation of multiple 255	

Gaussian functions, which provided the best fit to the measured LSFs: 256	

 257	

𝐿𝑆𝐹(𝑥) = 𝑎!  𝑒𝑥𝑝
!!!!
!!

!
!!!                (1) 258	
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where b and c are the mean and the standard deviation for each Gaussian function, 259	

respectively, and 𝑖 = 1,… , 5 represents indices attributed to the Gaussian functions. The 260	

PSF(𝑥,𝑦) is a separable function and can be constructed by assuming a rectangular LSF 261	

along-track (𝑦) as below (Lin et al. 2013): 262	

 263	

PSF 𝑥,𝑦 = LSF 𝑥  × LSF(𝑦)               (2) 264	

 265	

where LSF 𝑥  and LSF 𝑦  are the along-scan and along-track spatial responses of 266	

MODIS and VIIRS, respectively. Fig. 2 shows the unit-area PSFs employed to simulate 267	

MODIS and VIIRS scenes. Note that the discrepancies amongst band- or detector- 268	

dependent LSFs are assumed negligible and average sampling functions of 1000m ocean 269	

bands (MODIS) and 750m M-bands (VIIRS) are used. Also, in this study, the optical 270	

scattering (leakage) outside of the instantaneous field-of-view of a detector has been 271	

ignored (Meister and McClain 2010). The PSFs constructed using Eq.2 are further scaled 272	

and rotated per observation (pixel) according to the line-of-sight geometries. 273	

2.1.2.2. Line-of-sight Geometry 274	

In addition to the PSF modeling, the corresponding line-of-sight information is 275	

extracted from the geolocation products. The MODIS geolocation products (MYD03 and 276	

MOD03 corresponding to MODISA and MODIST, respectively) were obtained from the 277	

NASA’s Level-1 and Atmosphere Archive and Distribution System (LAADS) while 278	

those of VIIRS (GMODO) were downloaded from the NOAA’s Comprehensive Large 279	

Array-data Stewardship System (CLASS). The geolocation products allow for 280	

reconstructing per-pixel (-observation) line-of-sight geometries. The line-of-sight 281	



	 14	

information includes per-pixel geographic latitude and longitude, the view zenith angle 282	

(VZA), the view azimuth angle (VAA) relative to the North, and the satellite range (R), 283	

which is defined as the distance between the sensor and ground (Baker 2011). While the 284	

standard MODIS geolocation products are available at 1km grid resolution, the inherent 285	

VIIRS geolocation grids are at 750m.  286	

The 30m OLI Rrs products are sampled with MODIS and VIIRS PSFs and their 287	

respective line-of-sight geometries on a daily basis (for 16 days). The supports of the 288	

PSFs (Fig. 2) are essentially scaled and rotated in along-track and along-scan directions 289	

given per-pixel VZA, VAA, and R (Schowengerdt 1997). The PSFs are convolved with 290	

OLI Rrs products in a discrete form as follows:  291	

 292	

𝑆!! = 𝑃𝑆𝐹(!"#!,!""!) 𝑖, 𝑗 ∗ 𝑅!"! (𝑖, 𝑗)!!!              (3) 293	

 294	

where 𝑆!!  is the simulated VIIRS or MODIS sub-granule swath for the nth day 295	

(1 < 𝑛 < 16), k is the channel number, 𝑅!"! (𝑖, 𝑗) indicates the remote sensing reflectance 296	

attributed to a pixel location (𝑖, 𝑗) on the OLI grid for band k, and 𝑃𝑆𝐹(!"#!,!""!) is the 297	

PSF implemented for a given 𝑉𝑍𝐴! and 𝑉𝐴𝐴!, where m is an observation (pixel) index 298	

associated with MODIS or VIIRS geolocation products (Wolfe et al. 2002). The four OLI 299	

visible channels (i.e., 𝑘 = 1, 2 3,4  which represent 443, 482, 562, and 655nm) are 300	

processed during the simulation (Pahlevan and Schott 2013).  301	

The MODIS footprint size was computed using range, VZA, and MODIS effective 302	

focal length (380mm) for the along-scan and along-track directions(Schowengerdt 1997). 303	

On the other hand, due to the onboard aggregation scheme of VIIRS, there is no such a 304	
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direct relationship between VZA and footprint size. Therefore, the footprint size of 305	

VIIRS in along-scan and along-track was calculated by quadratic modeling of the scan-306	

angle-versus-foot-print size relationship (Cao et al. 2014). This was done by specifying 307	

observational aggregation zone (for VIIRS) and recalculating the scan angle from a given 308	

VZA as below 309	

 310	

𝛼 = 𝑠𝑖𝑛!! 𝑠𝑖𝑛 180− 𝑉𝑍𝐴 𝑅! 𝑅! + 𝐻              (4) 311	

 312	

where 𝑅! is the Earth radius for a given latitude and H stands for the VIIRS orbit altitude 313	

at nadir. To provide concrete examples, the along-scan size of a MODIS and VIIRS 314	

observation cell at nadir is approximately 2200m and 1160m, respectively, which are 315	

nearly 2.2 and 1.5 times larger than the projected size of the detectors on the ground (e.g., 316	

~ 750m for VIIRS). With this approach, simulated VIIRS or MODIS granules (5-min 317	

MODIS granules in case of MODIS) are created. Since only the OLI effective area is 318	

filled with valid Rrs values in the granules, we refer to the resulting swath as sub-granules. 319	

Fig. 3 shows an example of an OLI scene and the simulated MODISA, MODIST, and 320	

VIIRS. In this example, an OLI-derived chlorophyll-a product is “scanned” given 321	

MODISA, MODIST, and VIIRS viewing geometries. Note the differences in the average 322	

VZAs for the three simulated ocean color scenes.   323	

2.1.2.3. Time Period  324	

While the OLI Rrs products come from various coastal systems during different 325	

times/seasons (see Appendix), simulations of MODIS and VIIRS granules are performed  326	



	 16	

 327	

 328	

 329	

 330	

 331	

 332	

 333	

OLI	 MODISA	

VIIRS	 MODIST	

Fig.	3.	Examples	of	simulated	MODISA,	VIIRS,	and	MODIST	swaths	for	[Chla]	(𝒎𝒈 𝒎𝟑⁄ )	fields	derived	from	the	OLI-
derived	[Chla]	products	over	the	Yangtze	River	mouth,	East	coast	of	China.	The	average	view	zenith	angles	(VZAs)	
are	58.18o,	51.5o,	and	21.5o	for	MODISA,	VIIRS,	and	MODIST	swaths,	respectively.	The	features	are	reproduced	at	
different	viewing	conditions.	Note	that	OLI	and	MODIST	are	in	descending	orbits.	Also,	the	extremely	turbid	waters	
over	the	basin	are	masked. 
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for an arbitrary orbital repeat cycle of Aqua/Terra/SNPP starting from January 1st 334	

(DOY=1) to January 16th (DOY=16) in 2015. This is to maintain the orbit geometries 335	

similar for all the simulations, which allows for consistent product intercomparisons 336	

across all simulated products. Note that only viewing geometries of ocean color sensors 337	

are extracted over this period of time and the OLI scenes correspond to different days of 338	

year and environmental conditions. It should be noted that daily intercomparisons are 339	

carried out only for days that both granules fully cover an OLI scene across track. This is 340	

to ensure that there is a one-to-one comparison between simulated MODIS and VIIRS Rrs 341	

products. Note that for higher latitude OLI scenes (e.g., Alaska scenes), there are more 342	

than 16 pairs of MODISA-VIIRS (or MODIST-MODISA) intercomparisons. 343	

2.1.3. Retrieval of Secondary OC Products  344	

After MODISA, MODIST, and VIIRS Rrs swath-level products are simulated, [Chla], 345	

Kd(490), and bbp(655) are computed using standard algorithms available in SeaDAS 346	

(http://seadas.gsfc.nasa.gov). For [Chla], we used the OC3 algorithm (O'Reilly et al. 347	

1998; O’Reilly et al. 2000), which was recently adapted for the spectral bands of OLI 348	

(Franz et al. 2015). Similarly, for Kd(490) we used the KD2 algorithm (Mueller 2000) 349	

with the OLI-specific tuning provided in SeaDAS.  And finally, for bbp(655) we used the 350	

QAA inherent optical properties algorithm of Lee et al. (2002). It should be further 351	

emphasized that the absolute accuracy of retrievals are not critical in our study. What is 352	

important is capturing varying coastal-ocean spatial features (swirls, river plumes, eddies, 353	

etc.) of different sizes through OLI observations and the derived products.  354	

2.1.4. Gridding  355	
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The swath-level Rrs products are commonly distorted geographically (Fig. 3) 356	

rendering it impossible to make pixel-to-pixel comparison. For a particular day of Terra 357	

and Aqua’s overpasses (e.g., DOY=4), consider arbitrary MODISA and MODIST 358	

observations, which view an OLI scene at two significantly different viewing angles. The 359	

per-observation inter-comparisons of the two swaths are hindered by significantly 360	

different levels of distortions for the pair of observation (e.g., ~6km MODISA pixels 361	

against ~1km MODIST pixels). For this reason, the simulated sub-granules (𝑆!!) are 362	

gridded to 1km sinusoidal grid cells (𝑆!!") (Wolfe et al. 1998) using the nearest-neighbor 363	

technique (Campbell et al. 1996). The 1km grid was chosen to closely match the near-364	

nadir nominal resolution of MODIS and VIIRS over spatially variable coastal waters. 365	

The gridding allows for a uniform cell-by-cell comparison.  366	

2.2. Local Simulations   367	

With the simulation routine in place, it is also possible to provide insights into how 368	

well a discrete in-situ sample taken during a field campaign or at a field station represents 369	

an observation made by MODISA, MODIST, or VIIRS (Mélin et al. 2007; Moore et al. 370	

2015). To do so, OLI pixels were used to represent a sample measurement in the field or 371	

at a site. These locations can well be arbitrary, however, it was decided to carry out this 372	

analysis at known field sites where routine radiometric observations are made for OC 373	

calibration/validation purposes. We chose AERONET-OC stations (Zibordi et al. 2009b) 374	

located near Venice (Venise), Martha’s Vineyard (MVCO), Gustav Dalén (Gustav), 375	

Helsinki Light House (Helsinki), Zeebrugge, and Palgrunden (Fig. 1) to represent 376	

spatially variable waters at the proximity of coastal waters (http://aeronet.gsfc.nasa.gov). 377	

We further used the locations at the Marine Optical Buoy (MOBY) (Clark et al. 1997) 378	

and the BOUSSOLE site (Antoine et al. 2008b) to assess spatial variability in clear 379	
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waters. The latter two sites are buoys where in-situ radiometric observations are made to 380	

calibrate TOA OC observations. It is stressed that we do not incorporate the actual 381	

radiometric measurements at these sites. All the available cloud-/glint-free OLI scenes 382	

over the selected sites (totaling 120) were obtained from the USGS database. Similar to 383	

the previous section, the field sites were observed (scanned) for one orbit cycle (DOY=1 384	

through DOY=16) of Aqua, Terra, and SNPP. Therefore, the 16-day simulated products 385	

(locally) are computed for each OLI sample scene (Section 2.1.2.3). 386	

For processing the OLI TOA products, although best-practice atmospheric correction 387	

was employed (similar to Section 2.1.1; a combination of NIR-SWIR), there remains a 388	

small percentage of OLI pixels flagged for poor quality (due to ship wakes, significant 389	

resuspension events, etc.). Like the previous section, the OLI-derived OC products were 390	

processed with a 3×3 median filter prior to implementing the simulations (Section 2.1.2). 391	

The simulation was performed for one pixel, i.e., 1×1 window, as well as a 3×3 window, 392	

and a 5×5 window of MODISA, MODIST, and VIIRS pixels surrounding the site 393	

location to scrutinize in-water spatial variability at observation scales. Following multiple 394	

experiments, it was decided to discard simulation results (OC pixels) for which more than 395	

5% of the OLI pixels (falling under one ocean color footprint) are flagged. The major 396	

reasons for pixel-flagging in case of our cloud-free OLI scenes were failure of the 397	

atmospheric correction and the presence of land boundaries or marine vessels). When this 398	

criterion is passed, the remaining flagged pixels (< 5% of total) are ignored and not 399	

included in further statistical analysis. Moreover, the simulation ocean color footprints 400	

were discarded if CV calculated for a window exceeded a threshold of 0.15 (Bailey and 401	

Werdell 2006). To further minimize impacts of OLI residual scene noise (i.e., striping), 402	
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the same criterion was tested for the OLI pixels falling under the window under 403	

investigation. To simulate the in-situ radiometric observation at the site, a window of size 404	

5×5 (centered at the site location) was used to extract OLI-derived pixels totaling 16. 405	

This is to , exclude the center 3×3 elements  to avoid adjacency effects (Storey et al. 406	

2014). The median value computed from the 16 pixels was found to best represent the 407	

measurement at the site. To emulate calibration/validation activities at these sites, the 408	

gridding scheme (Section 2.1.4) was excluded in this section. Therefore, comparisons 409	

were made at swath-level observations.  410	

2.3. Metrics 411	

To gauge how two sets of products (derived from sensors A and B) compare, multiple 412	

metrics are defined. The per-cell (i) percent difference is defined as: 413	

 414	

𝑅𝑃𝐷! = 𝑅!! − 𝑅!! 𝑅!! + 𝑅!! 2     [×100]            (5)  415	

 416	

where 𝑅!! and 𝑅!!  stand for per-grid cell (i) simulated products for products derived from 417	

sensors A and B. In a slightly different manner, the absolute relative percent difference 418	

can be calculated 419	

𝐴𝑅𝑃𝐷! = 𝑅!! − 𝑅!! 𝑅!! + 𝑅!! 2     [×100]            (6)  420	

The median and mean values of RPD and ARPD over an entire grid can be used to 421	

specify the overall discrepancies for a product pair (Table 1). To further get insights into 422	

the differences in an absolute sense (product units), we also provide the root-mean-423	

squared difference for N grid cells computed as below 424	

𝑅𝑀𝑆𝐷 = !!
! !!!

! !!
!!!

!
                     (7)  425	
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Also, histograms of the RPD sub-granules (Eq. 5) provide valuable statistics on a per-426	

grid cell basis. Based on a histogram, multiple discrepancy metrics can be defined. In 427	

particular, we use the 1st momentum of the histogram to refer to the mean bias. We also 428	

define the Percent of Pixels (PoP) within the ±𝑧% range of the histogram mean. The PoP 429	

(%) is a metric that specifies the percentage of pixels that fall within the ±𝑧% of the 430	

mean of the histogram. For instance, when 𝑧 = 1% , the percentage of grid cells 431	

exhibiting differences less than 1%, i.e., −1% < 𝑅𝑃𝐷! < +1%, is expressed. This is 432	

represented by PoP @ 𝑧 = ±1%. Fig. 4 illustrates a sample RPD histogram computed 433	

from simulated VIIRS and MODISA sub-granule Rrs products with 𝑧  ranging within 434	

±10%. For a given pair of simulated gridded products, the narrower the histogram the 435	

more homogenous the site is. To eliminate outliers from our analysis, we restrict RPD 436	

within the ±60% range. These outliers commonly occur at land-water interfaces, where  437	

 438	

 439	

 440	

 441	

 442	

 443	

 444	

 445	

 446	

 447	

Fig.	4.	A	typical	histogram	derived	from	product	intercomparisons.	
Amongst	different	histogram-derived	parameters,	the	Percent	of	Pixels	
(PoP)	is	shown	above	for	various	levels	of	relative	percentage	
difference,	i.e.,	RPD=	1%,	5%,	and	10%.	Also,	histogram	kurtosis	
indicates	how	spread	is	the	distribution	around	the	histogram	mean.	
The	narrower	the	histogram,	the	more	consistent	a	pair	of	products	are.	
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discrepancies in the footprint sizes result in seemingly large differences. The other 448	

histogram-derived metric is kurtosis (K). Kurtosis is the fourth moment of the 449	

distributions, which is a descriptor of the shape of the distribution and explains how 450	

narrow a distribution is relative to that of a normal. For a normal distribution, the kurtosis 451	

value is ~3. The narrower the shape of a histogram, the larger the kurtosis value is. For 452	

example, when 𝐾 = 10, a product pair is found more consistent than if K were equal to 453	

3.  The overall analysis of these metrics helps understand how the combination of 454	

imaging geometry and spatial sampling contribute to the differences in ocean color 455	

products at regional scales.  456	

For the OC simulations over field stations, we used a slightly different metric termed 457	

the percent difference (PD) for the station (s) as below 458	

𝑃𝐷! = 𝑅!! − 𝑅!"#! 𝑅!"#!     [×100]                    (8)  459	

where 𝑅!!  represents the median (within a 3×3 or 5×5 box) simulated observations (for 460	

the sensor X) and 𝑅!"#!  is the median OLI OC products within a 5×5 box centered over 461	

the field station s. Note that we excluded the 3×3 pixels at the center, which effectively  462	

allowed 16 pixels for calculating the median value. The PD can be utilized to obtain an 463	

estimate of the temporal mean bias at a field station (e.g., MOBY). The absolute 464	

percentage difference can also be used to provide further insights into matchup analysis: 465	

 𝐴𝑃𝐷! = 𝑅!! − 𝑅!"#! 𝑅!"#!     [×100]                   (9)  466	

The metric APD is used to explain how close a simulated in-situ 𝑅!" is to that derived 467	

from satellite observations. Note that for simulating matchups, we only evaluate 468	

differences in 𝑅!". 469	

3. RESULTS  470	
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The uncertainties induced by spatial sampling are presented for two data quality 471	

assessment approaches: a) intercomparisons of products derived from two different OC 472	

sensors and b) products compared against “in-situ measurements” at eight different sites. 473	

While the former provides insights into the discrepancies in products at regional scales 474	

(Landsat scene size; 185𝑘𝑚×185𝑘𝑚 ), the latter is an assessment of spatial 475	

representativeness at the selected field sites. 476	

3.1. Regional Assessment  477	

3.1.1. Product Consistency  478	

In this section, the kurtosis value is used to describe the overall discrepancies between 479	

product pairs. Fig. 5 illustrates the kurtosis values (K) as a function of differences in the 480	

mean view zenith angles (𝑉𝑍𝐴) for the three selected sites. The mean view zenith angle is 481	

computed by taking the average of VZAs with which the OC sensor “views”  (scans) an 482	

OLI scene. The differences in 𝑉𝑍𝐴 , i.e., ∆𝑉𝑍𝐴 = 𝑉𝑍𝐴! −  𝑉𝑍𝐴!"  and ∆𝑉𝑍𝐴 =483	

𝑉𝑍𝐴!" −  𝑉𝑍𝐴!" , are binned into 10°  intervals. The subscripts MA, MT, and V 484	

correspond to MODISA, MODIST, and VIIRS, respectively. For each OLI scene, at least 485	

12 pairs of simulations for MODISA-VIIRS and MODIST-MODISA are incorporated. 486	

The error bars denote one-standard deviation for the data points (associated with mean 𝐾) 487	

situated within a ∆𝑉𝑍𝐴 bin. The differences in angles (∆𝑉𝑍𝐴) range from −60° to +60° 488	

on the x-axes. Figs. 5a-c correspond to VIIRS-MODISA intercomparisons of Rrs, [Chla], 489	

Kd(482), and bbp(655) products. It is clearly seen that the interconsistency between all 490	

products improves towards positive ∆𝑉𝑍𝐴s, i.e., narrower histograms on the right side of 491	

the plots. On average, the products are more consistent by a factor of two when the edge-492	

of-the-scan VIIRS products are compared against near-nadir products of MODISA.  493	
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This is attributed to larger along-scan footprint sizes of VIIRS at the edge of the scan 494	

(~ 2.7km) against the 2.2km along-scan MODISA footprint sizes at nadir-viewing 495	

geometries. On the other hand, the discrepancies between MODIST and MODISA  496	

 497	

 498	

 499	

 500	

 501	

 502	

 503	

 504	

Fig.	5.	The	kurtosis	values	(derived	from	the	RPD	histograms)	are	shown	as	a	function	of	differences	in	mean	VZAs	(𝑽𝒁𝑨!!!!!!).	The	
subscript	X	denotes	VIIRS	(V)	or	MODIST	(MT).	The	top	row	shows	the	asymmetric	trends	when	MODISA	and	VIIRS	products	
are	compared.	The	x-axes	denote	∆𝑽𝒁𝑨 = 𝑽𝒁𝑨!!!!!!𝑽 −  𝑽𝒁𝑨!!!!!!𝑴𝑨.	This	trend	implies	that	the	products	are	more	consistent	when	
𝑽𝒁𝑨!!!!!!𝑽 > 𝑽𝒁𝑨!!!!!!𝑴𝑨,	which	yield	similar	footprint	sizes	for	the	two	observations.	The	bottom	row	corresponds	to	the	
intercomparisons	of	MODISA	and	MODIST	products	as	a	function	of	∆𝑽𝒁𝑨 = 𝑽𝒁𝑨!!!!!!𝑴𝑻 −  𝑽𝒁𝑨!!!!!!𝑴𝑨.	Although	MODISA	and	
MODIST	are	in	afternoon	and	morning	orbits,	,	there	is	no	particular	trends	found	when	comparing	the	associated	products	at	
different	VZAs.	
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products exhibit symmetric trends around ∆𝑉𝑍𝐴 = 0 (Fig. 5d-f). It is, thus, inferred that 505	

although Aqua and Terra are in different morning and afternoon orbits, due to their 506	

similarities in spatial sampling and footprint size, there are no distinct trends observed on 507	

either side of the plots. The K values also provide clues on the in-scene spatial variability 508	

at each site. For instance, the K values for the Persian Gulf site are, on average, smaller 509	

than those for the Alaska and the Monterey Bay sites (indicating its larger inherent in-510	

water variability). While K values (and also PoP not shown here) show evidence for the 511	

angular dependency of product interconsistency at regional scales, the mean RPD (same 512	

plots as in Fig. 5 but for mean RPD not shown here for brevity) does not evidently exhibit 513	

angular dependency. This implies that the use of representative statistics (e.g., mean RPD 514	

and ARPD) computed at regional scales can minimize the overall product inconsistencies 515	

(as opposed to pixel-by-pixel comparisons captured by K and PoP). Table 1 contains the 516	

overall statistics calculated for all sites. As expected, for all the products compared in this 517	

study, the mean RPD values converge to zero validating that overall intercomparisons at 518	

regional scales ( 185𝑘𝑚×185𝑘𝑚  in this study) are immune from the effects of 519	

differences in spatial sampling. Note that the RPD ranges within the ±60%  with 520	

histograms resembling the normal distribution, that is, the differences can reach up to 521	

60%. The comparisons in the ARPD domain (absolute relative percent differences 522	

computed for all scenes) show percent differences falling within the 1% to 4.5% range. 523	

This varies depending on whether the mean or median metrics are considered. We refer 524	

to the mean ARPD values (averaged for the two sets of intercomparisons), as the 525	

 526	
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 Table 1. The overall product intercomparisons statistics, i.e., median (med), mean, and RMSE, averaged 527	
and tabulated for all sites.   528	
 529	

 530	

intercomparison uncertainty induced by differences in the spatial sampling that one 531	

should anticipate for similar practices in coastal waters. The values computed as 1.8%, 532	

1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the Rrs(443), Rrs(482), Rrs(561), Rrs(655), 533	

[Chla], Kd(482), and bbp(655) products, respectively (Table 1). The RMSD values 534	

indicate that, overall, the differences in Rrs and [Chla] products are < 0.0005 𝑠𝑟!! and  535	

< 0.15 𝑚𝑔 𝑚!, respectively.  536	

3.1.2. Uncertainty Thresholds 537	

As noted, the histograms of the RPD grids can be used to interpret the inconsistencies 538	

between a product pair. Fig. 6 shows how the percentage of pixels (PoP) lying within a 539	

threshold (±𝑧%) can change. The results are shown for six sample sites. These curves are 540	

the mean values derived from all the daily intercomparisons within one MODISA-VIIRS 541	

orbit cycle (MODIST-MODISA comparisons are not shown here). Each marker indicates 542	

the percentage of pixels falling within a relative percent difference (RPD) shown on the 543	

x-axes as z. Note that the x-axes are shown from 1 to 10% (recall from Section 3.2 that 544	

  Rrs(443) Rrs(482) Rrs(561) Rrs(655) [Chla] Kd(482) Bbp(655
) 

 
VIIRS  

Vs. 
MODISA 

Med (RPD)  [%] 0.0035 0.0029 0.0005 0.0004 -0.0045 -0.0008 -0.0031 
Mean (RPD)[%] 0.0133 0.0049 -0.0060 -0.0291 -0.0100 -0.0014 -0.0164 
Med (ARPD)[%] 0.7802 0.8114 1.0604 1.5287 1.5814 0.9795 1.9116 
Mean (ARPD) [%] 1.5870 1.6899 2.1482 4.0010 2.8950 1.9385 4.2637 
RMSE 0.0004 0.0004 0.0004 0.0002 0.1423 0.0124 0.0022 

 
MODIST 

Vs. 
MODISA 

Med (RPD)  [%] 0.0009 0.0007 -0.0001 -0.0043 -0.0141 -0.0032 0.0000 
Mean (RPD)[%] -0.0052 -0.0021 -0.0096 -0.0055 -0.0431 -0.0188 -0.0273 
Med (ARPD)[%] 0.8660 0.8848 1.2238 2.2307 1.3995 0.7839 1.4984 
Mean (ARPD) [%] 2.0921 2.0638 2.6193 4.6604 2.6351 1.6529 3.7957 
RMSE 0.0005 0.0005 0.0005 0.0003 0.1351 0.0123 0.0022 
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the RPDs can reach as high as 60%). The y-axis indicates the PoP (%). Taking the graph 545	

associated with the Alaska site as an example, when a 1% RPD in products (Rrs, [Chla], 546	

Kd(490), bbp(655)) is adopted as an accepted threshold (i.e., pixels are assumed 547	

consistent), there is, on average, only 40-60% of the pixels that meet this threshold. As 548	

one accepts higher uncertainty thresholds more pixels fall within the threshold. As it 549	

appears from Figs. 6a & 6d, the product discrepancy is dependent on inherent spatial 550	

variability of the coastal ecosystems under study. For the sites with less spatial variability 551	

(inferred via visual analyses), over 90% of the products are in good agreement, when 552	

uncertainty threshold is set at 2%. Since the shape of the histograms resemble normal 553	

distributions, it is also possible to express the uncertainties in intercomparisons as 554	

probability. These sites include East China and Saint Lawrence. Consider MODISA-555	

VIIRS discrepancy in [Chla] for the East China site (Fig. 6a), it can be inferred that there 556	

is a 68% chance for any given pixel to exhibit differences below ±1%. For the Saint 557	

Lawrence site, the inconsistency curves quickly reach 100% for all the products at the ~ 558	

5% threshold. These results (including those not shown here) indicate that there is, on 559	

average, 80% chance that product intercomparisons show inherent differences below 8% 560	

(due to the combination of in-scene spatial variability and sensors’ viewing geometries), 561	

a threshold at which the product can be considered consistent. In other words, there is a 562	

20% chance that products show more than ~8% discrepancies. Depending on the 563	

application, one may choose different thresholds for such intercomparison analyses. 564	

Visual inspections of RPD grids verify that high discrepancies occur at the proximity of 565	

land-water interfaces, where the two instruments view such high-contrast regions from  566	
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 567	

 568	

 569	

 570	

 571	

 572	

 573	

 574	

 575	

 576	

Fig.	6.	The	spatial	interconsistency	curves	showing	the	percentage	of	pixels	(PoP)	found	consistent	at	different	|𝑹𝑷𝑫|	
thresholds	(x-axes).	As	the	absolute	RPD	increases	more	pixels	(%	PoP)	are	expected	to	fall	within	the	threshold.	On	average,	
more	than	80%	of	the	pixels	are	considered	consistent	when	z=8%	difference	in	products	are	adopted	as	the	threshold.		
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different vantage points. Note that in actual imaging conditions, adjacency effects 577	

may further complicate the discrepancies (Meister and McClain 2010). Although the 578	

original OLI products have undergone smoothing and de-noising, there are some signal-579	

dependent trends in the spatial consistency curves (as seen in Fig.6). The red channel and 580	

the bbp(655) products (derived from MODISA and VIIRS) commonly show the largest 581	

discrepancies, whereas (for sites with 𝐶ℎ𝑙𝑎 < 0.3𝑚𝑔 𝑚!) Rrs (443) product is found to 582	

be the most consistent product. This is consistent with the previously published works 583	

(Mélin et al. 2007; Moore et al. 2015) and is attributed to the low signal levels 584	

measured/retrieved. For all the sites and geometries, Kd (490) is, on average, amongst the 585	

relatively consistent products while the [Chla] products exhibit less consistency (slightly 586	

better than those of Rrs (655) and bbp (655)).  587	

The graphs shown in Fig. 6 indicate the interconsistency between products derived 588	

from MODISA and VIIRS. It is also important to obtain insights into how VIIRS-589	

MODISA cross-comparisons differ from those for MODIST-MODISA. This would 590	

reveal how differences in the orbits and viewing geometries can, overall, contribute to 591	

intercomparison in coastal ocean waters. Fig. 7 shows the median ratio of PoPs 592	

associated with the MODISA-VIIRS and MODIST-MODISA intercomparisons as a 593	

function of varying thresholds (z). It is inferred that the MODISA- and VIIRS-derived 594	

products are more consistent (12% at maximum) than MODIST-MODISA products.  595	

For instance, there are 8-12% more pixels falling within ±1% threshold (z) when 596	

MODISA and VIIRS products are compared, i.e., VIIRS and MODISA are slightly in a 597	

better agreement than MODIST and MODISA. This indicates the importance of satellite 598	

orbits (ascending versus descending) on product interconsistency and long-term global  599	
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Fig.	7.	The	ratio	of	MODISA-VIIRS	and	MODIST-MODISA	
intercomparisons	(based	on	PoP)	as	a	function	of	the	
uncertainty	threshold	(absolute	RPD).	Overall,	MODISA	and	
VIIRS	products	are	more	consistent	than	when	products	of	
MODIST	and	MODISA	are	compared.			
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Fig.	8.	The	spatial	consistency	curves	shown	for	Rrs(443)	as	a	function	of	scale,	i.e.,	
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monitoring of coastal oceans.  As larger thresholds are adopted, the intercomparisons are 622	

expected to become very similar for the two sensor pairs (e.g., less than 3% difference in 623	

PoP at 𝑧 = ±10%  threshold). Note that these intercomparisons encompass all 624	

observations (pixels) across various OLI scenes, which permits to gauge consistency on a 625	

per-grid cell basis between sensor (product) pairs.  626	

3.1.3. Scale-dependency 627	

The intercomparisons presented in the previous section showed product discrepancies 628	

at the 1km grid cell size (Section 2.1.4).  In this section, we will discuss the spatial scales 629	

at which nearly all the pixels meet a 𝑧 = ±1% difference threshold (RPD). For this 630	

purpose, the 1km grid cell is filtered using varying window sizes (i.e.,  3×3,… , 21×21). 631	

The products (smoothed at different scales) are then compared (i.e., calculating RPD) to 632	

quantify at what scale, i.e., window size, they can be regarded as consistent, i.e., the 633	

inconsistencies reach a minimum. At such scales, the product intercomparisons can be 634	

considered insensitive to the effects of spatial sampling. To exclude the artifacts due to 635	

the averaging at the land-water interfaces, the grid cells 21km from these boundaries 636	

were not incorporated in the analysis. Fig. 8 illustrates the spatial interconsistency curves 637	

for the Rrs(443) products shown for the different sites studied here. The y-axis is the PoP 638	

(%) specified for 𝑧 = ±1% threshold and the x-axis denotes the window size used to 639	

smooth the products. As expected the product inconsistencies are at minimum when 640	

comparing relatively uniform coastal scenes. This is noticeable for the Saint Lawrence 641	

and East China sites, for which the curves quickly peaks when products are smoothed 642	

with 3×3 windows, i.e., effective grid size of 3𝑘𝑚 × 3𝑘𝑚. However, for most sites, the 643	

spatial interconsistency curves plateau (does not necessarily reach 100%) when the 644	
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effective grid cell size is ~7𝑘𝑚. This indicates that for relatively reliable product 645	

intercomparisons in offshore regions, one may need to perform a low-pass filtering with 646	

window sizes of at least 7 × 7 to minimize the impact of high-frequency variations in 647	

coastal ocean waters. In our case studies, the exception is the Persian Gulf site where the 648	

corresponding curve does not reach a maximum until 9×9 windows are implemented. It 649	

is, therefore, surmised that the intercomparison studies at 9𝑘𝑚×9𝑘𝑚 standard Level-3 650	

products are expected to be least impacted by the effects of spatial sampling, i.e., 651	

differences in the viewing geometries, orbits, footprint sizes, etc.). Note that depending 652	

on the inherent spatial variability of the sites, there may be some residual differences in 653	

the products as seen in Fig. 8 for spatial scales larger than 9km. It is stressed that the 654	

result in this section applies to the offshore regions (> 21km off the coastlines), where 655	

RPD values, in general, remain below 10% ( 𝑧 < 10%).  656	

3.2. Spatial representativeness at In-situ sites  657	

As described in Section 2.2, for the local spatial analysis, the OLI observations at the 658	

proximity of the field sites are regarded as the “sea-truth” and compared against 659	

simulated coarse OC products. Fig. 9 shows PDs for the available OLI-derived Rrs(443) 660	

products at the MVCO, Venise, and Zeebrugge sites. Note that the OLI scenes available 661	

from 2013 to 2015 are shown for one annual period and grouped according to the OLI 662	

observation dates, i.e., OLI scenes. For these sites, MODISA, MODIST, and VIIRS 663	

simulated observations are averaged over 3×3 boxes. Several conclusions can be drawn 664	

from the graphs. First, although the CV < 0.15 threshold was implemented to discard  665	
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Fig.	9.	The	simulated	percent	differences	(PD)	for	𝑹𝒓𝒔(𝟒𝟒𝟑)	(Eq.	8)	shown	for	the	three	AERONET-OC	stations	for	all	
available	OLI	scenes	(N)	at	the	sites.	The	PDs	are	calculated	for	𝟑×𝟑	simulated	OC	pixels	and	a	representative	OLI	OC	
pixel.	The	PD	ranges	from	-20%	to	+30%	for	these	sites	and	is	mainly	dependent	on	the	environmental	conditions	(in-
water	features)	captured	by	the	OLI	scene.	The	MODISA	and	MODIST	show	more	day-today	variability	with	respect	to	
VIIRS.	
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simulated outliers, the daily simulated PDs (Eq. 8) can reach as high as ±18%. The 667	

largest PDs may be attributed to influxes of terrestrial inputs and algal bloom events. 668	

Second, MODISA and MODIST exhibit larger day-to-day variability in PD (vertical 669	

axes) than that for VIIRS during an orbit cycle for most of the coastal conditions. The 670	

per-orbit cycle variability of PD, on average, ranges from 1% to 15%. Third, spatial 671	

variability around each site primarily drives the magnitude of the difference (note the 672	

cluster of data points associated with each OLI scene). On the other hand, the variations 673	

in viewing geometry result in a random variability (clutter) around the average PD. Note 674	

that the PDs (or APDs) in the red channel are the largest (i.e., < 25%) amongst all the 675	

channels due to the relatively small signal (Eq. 9).  676	

This random variability in the day-to-day simulations is lowest for the MOBY and 677	

BOUSSOLE sites. Fig. 10 illustrates variability for different orbits for six (A to F) OLI 678	

scenes at the MOBY site. To comply with the existing calibration protocols of ocean 679	

color products at the MOBY site (Bailey and Werdell 2006), the median of simulated 680	

ocean color observations are computed within 5×5-element windows and compared 681	

against representative OLI pixels (Section 2.3). For the scenes A, B, and C, the mean PD 682	

is nearly zero with some random variability from orbit to orbit. The random variability 683	

(around the mean trend) ranges from 0.5% to 1.5%. In general, VIIRS exhibits less 684	

variability relative to MODISA and MODIST, in particular when spatial variability 685	

around the site increases (e.g., scene E). The overall (mean) trend generally remains 686	

within the ±5% range. The differences found for the BOUSSOLE site (not shown here) 687	

range within ±4%. It is thus worthwhile noting that the variations in the footprint size 688	
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increase uncertainties (random variability) and may introduce bias in 689	

calibration/validation efforts at these spatially homogenous sites.  690	

 691	
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Fig. 10.  The PD (%) shown for three OLI-derived Rrs (443) products (i.e., A, B, C, D, E, and F) for the 
MOBY site. The curves correspond to MODISA (red), MODIST (green), and VIIRS (blue) products. The 
solid lines denote PDs corresponding to 𝟓×𝟓 windows. The larger variability associated with MODIST and 
MODISA with respect to VIIRS is noticeable. 
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 701	

 702	

In the OC matchup analysis, after performing a multi-stage filtering (Bailey and 703	

Werdell 2006), the uncertainties are commonly attributed to the sensor calibration (at a 704	

reference wavelength), and radiative transfer modeling (atmospheric correction), as well 705	

as atmospheric conditions. Temporal averaging, however, diminishes impacts of spatial 706	

mismatch at validation sites (Bailey et al. 2008; Franz et al. 2007). To provide insights 707	

into the overall expected biases for the coastal sites for matchup analysis, we present 708	

average statistics derived from the metrics defined in Section 2.3. After discarding all the 709	

outliers (i.e., flagged simulated OC observations), 1091, 1084, and 2043 valid 710	

“matchups” were incorporated in this statistical analysis for MODISA, MODIST, and 711	

VIIRS, respectively. Fig. 11 illustrates the average absolute differences (APDs) for the 712	

443nm channel. It is inferred that, on average, the APD (Eq. 9) increases with the 713	

increase in the window size at these coastal sites. This is expected as larger spatial 714	

variability is introduced in the matchup analysis by incorporating more OC observations 715	

in coastal waters. Compromise has to be made as increasing the window size lowers the 716	

noise contribution. Furthermore, there is, on average, 10-15% less difference associated 717	

with simulated matchups for VIIRS when compared to those of MODISA and MODIST. 718	

Although use of a single (center) pixel gives rise to a minimum difference in our 719	

simulated matchup analysis, in practice, residual detector striping/banding adds another 720	

source of uncertainty in the analysis. Thus, depending on the instrument performance (or 721	

the efficiency of the de-striping approach) and the environmental conditions (turbidity, 722	

resuspension, river plumes, algal blooms, etc.) either center pixel (1×1 ) or the 723	
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median/mean of a 3×3 window is recommended for use. Currently, the use of a 3×3-724	

element window is common practice for validating ocean color products in coastal waters 725	

(Zibordi et al. 2009a). Although an apparent random variability is expected for  726	

 727	

 728	

 729	

 730	

 731	

 732	

 733	

Fig. 11. The	overall	mean	absolute	differences	(APDs)	computed for simulated MODISA (N=1091), MODIST 
(N=1084), and VIIRS (N=2043) for different window sizes shown for the OLI 443nm channel. The windows 
are centered over the AERONET-OC (costal) sites.  

MODISA MODIST VIIRS 
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 734	

 735	

Table 2. The average, per-band statistics computed for all the AERONET-OC (coastal) sites. 736	
 737	

 738	

 739	

 740	

 741	

 742	

 743	

 744	

 745	
	746	
 747	

 748	

 749	

 750	

 
 1x1 3x3 5x5 

Band 
(nm) 

APD 
(%) 

RMSD 
(1/sr) 

PD 
(%) 

APD 
(%) 

RMSD 
(1/sr) 

PD 
(%) 

APD 
(%) 

RMSD 
(1/sr) 

PD 
(%) 

MODISA 

443 3.4 0.00024 0.8 3.8 0.00031 1 4.2 0.00033 1.4 
482 3.3 0.00029 0.7 3.7 0.00039 0.7 4.1 0.00043 1 
561 3.4 0.00040 0.6 4 0.00049 0.7 4.5 0.00055 1 
655 6.8 0.00038 0.6 8.1 0.00042 1.1 8.3 0.00047 1.9 

MODIST 

443 3.3 0.00023 0.8 3.8 0.00028 0.9 4.5 0.00036 1.6 
482 3.2 0.00027 0.6 3.7 0.00035 0.7 4.4 0.00045 1 
561 3.4 0.00037 0.5 4.3 0.00046 0.6 5.1 0.00056 1 
655 6.2 0.00038 1 8.4 0.00042 1.6 9 0.00049 1.4 

VIIRS 

443 2.8 0.00020 0.5 3.3 0.00027 0.6 3.8 0.00033 0.9 
482 2.7 0.00024 0.4 3.2 0.00034 0.6 3.8 0.00042 0.7 
561 2.9 0.00032 0.4 3.6 0.00045 0.6 4.3 0.00054 0.8 
655 5.6 0.00032 0.9 7.4 0.00041 1.8 8.6 0.00047 2.3 
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observations made from different orbits (Fig. 9) over varying environmental conditions 751	

(turbidity, resuspension, river plumes, etc.), we found that there is a bias that may not be 752	

removed by temporal averaging. At the coastal sites, the mean bias is found to be  753	

~ 0.8%, which is the average of the mean difference, i.e., PD, derived for all the spectral 754	

bands and window sizes (Table 2). For the BOUSSOLE and MOBY sites, the temporally 755	

averaged PDs are found to fall within the ±0.1% range for the 443nm channel. The 756	

average PD, APD, and RMSD metrics are tabulated in Table 2. Note that these 757	

differences are attributed to matchup analysis at field stations where temporal averaging 758	

is possible. However, at in-situ sampling stations (taken during research cruises), the 759	

difference may be as high as ±18% (Fig. 9) depending on the footprint size and 760	

environmental conditions.   761	

In addition to the overall expected differences, we also give insights into the mean 762	

variability, i.e., standard deviation around mean difference, shown along the y-axes of 763	

Figs. 9 for all the sites as a function of window size for the coastal sites. We found the 764	

uncertainty (variability) to be 3%, 3.5% and 3.9% for the 443nm channel, and 3%, 4.5%, 765	

Fig. 12. The OLI-derived Rrs(443) noise (1/sr) is shown as a function of solar zenith angle 
(SZA). The standard deviation was calculated over 𝟓×𝟓-element windows over uniform bodies 
of water from various OLI scenes (N=75). The product noise remains relatively stable for low to 
medium range SZA but increases beyond SZA=𝟓𝟖°. 
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and 7.8% for the 561nm channel when 1×1 , 3×3 , and 5×5  windows are used 766	

respectively.  In contrast, the variability in PD (or APD) at the BOUSSOLE and MOBY 767	

sites (located in blue waters) was reduced by increasing the window size, i.e., the 5×5-768	

element window provided minimum variability.  769	

4. DISCUSSIONS 770	

The basis of the spatial analysis presented here was the OLI-derived ocean color 771	

products. Although OLI offers dramatically improved SNR when compared with the 772	

previous Landsat sensors, the striping and banding effects limit the quality of the ocean 773	

color products at the inherent 30-m resolution. This is, in particular, noticeable at lower 774	

signal levels when solar zenith angle (SZA) is high. Fig. 12 illustrates the Rrs(443) noise 775	

as a function of SZA computed over uniform bodies of water across various independent 776	

OLI-derived products. In order to surmount this instrument-induced variability within 777	

OLI-derived products, the high-frequency components were removed by running a 3×3-778	

element window size. To evaluate the impact of the filtering, we conducted large-area 779	

simulations (Section 3.1) for a handful of OLI scenes and found that the results (Table 1) 780	

changed only by a fraction of a percent. The results presented in Section 3.2, however, 781	

showed a more appreciable difference (< 5% in Table 2) for some of the coastal sites 782	

located at higher latitudes where the impact of striping in OLI products was severe. These 783	

scenes (characterized with low SNR) were therefore reprocessed with an average 784	

Ångström exponent (derived over a subscene) to minimize the effects of striping.  785	

The OLI scenes applied in Section 2.1 represents a large range of productivity/ 786	

turbidity (0 < 𝐶ℎ𝑙𝑎 < 15 𝑚𝑔 𝑚!) from Amazon River basin, Mississippi River and 787	

Bay of Bengal to the Great Lakes. Our assumptions (e.g., use of a single sampling 788	
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function for MODIS across all channels; Fig. 2) in the simulation process have no 789	

significant effects on the results. This was examined using a slightly different PSF over 790	

three OLI scenes. The average APDs presented in Section 3.1 provide average estimates 791	

for an overall error budget analysis when comparing gridded ocean color products at 1km 792	

resolution. However, as discussed in Section 3.1, the actual per-pixel discrepancies may 793	

differ depending on in-water features and viewing geometries.  794	

Although the differences (Section 3.2) were found to reach up to ~18% in the blue-795	

green channels, the spatial mismatch in different (OLI) channels tend to agree in their 796	

signs (Table 2) implying that even at highly spatially variable sites the impact on the 797	

ocean color products derived from band-ratio algorithms (e.g., [Chla]) are expected to be 798	

minimal. Note, however, that this does not hold true for all cases studied here, i.e., 10-799	

20% of the simulated matchups showed contradictory trends. The average statistics 800	

(Table 2) extracted from more than 100 OLI scenes over six different coastal sites 801	

provide a set of robust estimates for error budget analysis in ocean color product 802	

validation chain in coastal waters. While the revisit cycle of these polar orbiters (SNPP, 803	

Aqua, and Terra) similarly repeats every 16 days, we conducted a sensitivity study on the 804	

choice of the orbit cycle where DOY=5 through DOY=20 orbits of Aqua-MODIS was 805	

utilized for simulations over the MVCO site. The overall APD at the site changed only on 806	

the order of 0.1% indicating that the choice of the 16-day orbit cycle is insignificant.   807	

5. CONCLUSIONS 808	

This study presents a novel, comprehensive approach to characterize the uncertainties 809	

associated with the product intercomparisons and in-situ validation efforts induced by 810	

different spatial sampling effects of three OC imagers. The high quality, moderate-811	
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resolution (~30m) OLI-derived OC products obtained over various regions/locations are 812	

central to the results presented here. Here, we emphasize the critical conclusions of the 813	

study.  814	

The following conclusions can be drawn from the results pertaining to the product 815	

intercomparisons at regional scales:  816	

• Due to the differences in the spatial sampling schemes of MODISA and VIIRS, there 817	

is a viewing-angle (footprint-size) dependency on the product intercomparisons. 818	

Therefore, care must be taken when high-fidelity per-pixel intercomparison is 819	

desired.   820	

• The mean absolute percent differences (APD) in product intercomparisons due to the 821	

differences in the spatial sampling are estimated to be 1.8%, 1.9%, 2.4%, 4.3%, 822	

2.7%, 1.8%, and 4% for the Rrs(443), Rrs(482), Rrs(561), Rrs(655), [Chla], Kd(490), 823	

and bbp(655) products, respectively. 824	

• The differences in the products in the offshore regions are mitigated if a pair of 825	

products is smoothed over window sizes of at least 7𝑘𝑚×7𝑘𝑚. 826	

The radiometric differences at coastal in-situ sites always include some level of 827	

uncertainty in the spatial representativeness of the site. With the strategies set forth here, 828	

we provide the following conclusions to give insights into the magnitude of these 829	

uncertainties: 830	

• The ocean color observation centered on the stationary in-situ coastal sites provides 831	

the minimum temporally averaged bias and variability. Assuming residual 832	

striping/banding effects in the products, a 3×3-element window is recommended. 833	
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On the other hand, 5×5-element boxes yield both lower biases and uncertainties 834	

over clear open waters. 835	

• The contribution of spatial sampling to differences between satellite and in-situ 836	

measurements in near-shore areas can reach as large as 18%. This varies according 837	

to the in-water spatial variability and the satellite orbit, which determines the 838	

footprint size (sensor viewing angle).  839	

• The APD in the spatial representativeness of a field site (for Rrs products) is found, 840	

on average, to be 3.7%, 3.5%, 3.9%, 8.3% for the 443, 482, 561, and 655nm 841	

channels, respectively.   842	

• The daily observations of VIIRS show less random variability (induced by spatial 843	

sampling) than those of MODISA and MODIST at the calibration sites (e.g., 844	

MOBY) as well as the coastal validation sites. In addition, the number of valid 845	

simulated matchups for VIIRS was found twice larger than that of MODIS 846	

suggesting that more robust statistical analysis is possible for the VIIRS products. 847	

The results of this study, for the first time, allow for taking one step forward for a full 848	

quantification of the overall error budget analysis of coastal ocean products by isolating 849	

the errors associated with spatial sampling. Similar sensitivity analyses can be performed 850	

to estimate uncertainties/biases in spectral sampling and geolocation errors to further 851	

decompose the overall error budget. We further highlight the advantages of near-uniform 852	

along-scan spatial sampling (assuming no loss in the radiometric performance) for future 853	

ocean color missions like the Pre-Aerosol, Cloud, and ocean Ecosystem (PACE) and the 854	

planned GEOstationary Coastal and Air Pollution Events (GEO-CAPE) to enhance our 855	
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ability in validating products and quantifying corresponding uncertainties for reliable 856	

monitoring of the changing coastal waters.   857	
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Appendix  1086	

Table A1. The OLI scenes processed for the product intercomparison study (Section 2.1) are tabulated 1087	
LC80090262014248LGN00 LC80440342014285LGN00 LC81370452015076LGN00 
LC80110302013227LGN00 LC80440352015064LGN00 LC81640402014310LGN00 
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List	of	Figures	1121	
Fig.	1.	The	sites	(indicated	by	boxes)	where	OLI	scenes	are	processed	to	Level-2	OC	products	for	1122	
intercomparisons	of	products	at	regional	scales	(Section	2.1).	For	these	locations,	the	MODISA,	MODIST,	and	1123	
VIIRS	OC	products	were	simulated	according	to	their	corresponding	viewing	geometries	from	DOY=1	to	DOY=16	1124	
in	2015.	The	red	dots	denote	the	locations	where	simulated	matchups	were	produced	(Section	2.2).		1125	

Fig.	2.	The	band/detector	average	point	spread	functions	(PSFs)	shown	for	a)	MODIS,	b)	VIIRS	near-nadir	zone	1126	
(PSF-V3g),	 c)	 VIIRS	 mid-range	 zone	 (PSF-V2g),	 and	 d)	 VIIRS	 edge-of-scan	 zone	 (PSF-V1g).	 Note	 that	 it	 is	1127	
assumed	 that	 the	 along-track	 response	 is	 rectangular	 (ideal	 response).	 All	 the	 functions	 have	 unit-area.	 The	1128	
coordinates	are	in	arbitrary	pixel	units. 1129	

Fig.	3.	Examples	of	simulated	MODISA,	VIIRS,	and	MODIST	swaths	for	[Chla]	(𝒎𝒈 𝒎𝟑)	fields	derived	1130	
from	the	OLI-derived	[Chla]	products	over	the	Yangtze	River	mouth,	East	coast	of	China.	The	average	1131	
view	zenith	angles	(VZAs)	are	58.18o,	51.5o,	and	21.5o	for	MODISA,	VIIRS,	and	MODIST	swaths,	1132	
respectively.	The	features	are	reproduced	at	different	viewing	conditions.	Note	that	OLI	and	MODIST	1133	
are	in	descending	orbits.	Also,	the	extremely	turbid	waters	over	the	basin	are	masked. 1134	

Fig.	4.	A	typical	histogram	derived	from	product	intercomparisons.	Amongst	different	histogram-derived	1135	
parameters,	the	Percent	of	Pixels	(PoP)	is	shown	above	for	various	levels	of	relative	percentage	difference,	i.e.,	1136	
RPD=	1%,	5%,	and	10%.	Also,	histogram	kurtosis	indicates	how	spread	is	the	distribution	around	the	histogram	1137	
mean.	The	narrower	the	histogram,	the	more	consistent	a	pair	of	products	are.		1138	

Fig.	5.	The	kurtosis	values	(derived	from	the	RPD	histograms)	are	shown	as	a	function	of	differences	in	mean	1139	
VZAs	(𝐕𝐙𝐀).	The	subscript	X	denotes	VIIRS	(V)	or	MODIST	(MT).	The	top	row	shows	the	asymmetric	trends	1140	
when	MODISA	and	VIIRS	products	are	compared.	The	x-axes	denote	∆𝐕𝐙𝐀 = 𝐕𝐙𝐀𝐕 −  𝐕𝐙𝐀𝐌𝐀.	This	trend	1141	
implies	that	the	products	are	more	consistent	when	𝐕𝐙𝐀𝐕 > 𝐕𝐙𝐀𝐌𝐀,	which	yield	similar	footprint	sizes	for	the	1142	
two	observations.	The	bottom	row	corresponds	to	the	intercomparisons	of	MODISA	and	MODIST	products	as	a	1143	
function	of	∆𝐕𝐙𝐀 = 𝐕𝐙𝐀𝐌𝐓 −  𝐕𝐙𝐀𝐌𝐀.	Although	MODISA	and	MODIST	are	in	afternoon	and	morning	orbits,	,	1144	
there	is	no	particular	trends	found	when	comparing	the	associated	products	at	different	VZAs.	1145	

Fig.	6.	The	spatial	interconsistency	curves	showing	the	percentage	of	pixels	(PoP)	found	consistent	at	different	1146	
𝐑𝐏𝐃 	thresholds	(x-axes).	As	the	absolute	RPD	increases	more	pixels	(%	PoP)	are	expected	to	fall	within	the	1147	
threshold.	On	average,	more	than	80%	of	the	pixels	are	considered	consistent	when	z=8%	difference	in	products	1148	
are	adopted	as	the	threshold.	1149	

Fig.	7.	The	ratio	of	MODISA-VIIRS	and	MODIST-MODISA	intercomparisons	(based	on	PoP)	as	a	function	of	the	1150	
uncertainty	threshold	(absolute	RPD).	Overall,	MODISA	and	VIIRS	products	are	more	consistent	than	when	1151	
products	of	MODIST	and	MODISA	are	compared.			1152	

Fig.	8.	The	spatial	consistency	curves	shown	for	Rrs(443)	as	a	function	of	scale,	i.e.,	𝟏𝒌𝒎×𝟏𝒌𝒎,𝟑𝒌𝒎×𝟑𝒌𝒎,	etc.	1153	
The	y-axis	denotes	PoP	at	z=1%,	which	increases	as	the	effective	grid	cell	size	increases.	The	optimal	scale,	on	1154	
average,	is	found	at	7km.		1155	

Fig.	9.	The	simulated	percent	differences	(PD)	for	𝑹𝒓𝒔(𝟒𝟒𝟑)	(Eq.	8)	shown	for	the	three	AERONET-OC	stations	1156	
for	all	available	OLI	scenes	(N)	at	the	sites.	The	PDs	are	calculated	for	𝟑×𝟑	simulated	OC	pixels	and	a	1157	
representative	OLI	OC	pixel.	The	PD	ranges	from	-20%	to	+30%	for	these	sites	and	is	mainly	dependent	on	the	1158	
environmental	conditions	(in-water	features)	captured	by	the	OLI	scene.	The	MODISA	and	MODIST	show	more	1159	
day-today	variability	with	respect	to	VIIRS.	1160	

Fig.	10.		The	PD	(%)	shown	for	three	OLI-derived	Rrs	(443)	products	(i.e.,	A,	B,	C,	D,	E,	and	F)	for	the	MOBY	site.	1161	
The	curves	correspond	to	MODISA	(red),	MODIST	(green),	and	VIIRS	(blue)	products.	The	solid	lines	denote	PDs	1162	
corresponding	to	𝟓×𝟓-element	windows.	The	larger	variability	associated	with	MODIST	and	MODISA	with	1163	
respect	to	VIIRS	is	noticeable.		1164	

Fig.	11.	The	overall	mean	absolute	differences	(APDs)	computed	for	simulated	MODISA	(N=1091),	MODIST	1165	
(N=1084),	and	VIIRS	(N=2043)	for	different	window	sizes	shown	for	the	OLI	443nm	channel.	The	windows	are	1166	
centered	over	the	AERONET-OC	(costal)	sites.		1167	

Fig.	12.	The	OLI-derived	Rrs(443)	noise	(1/sr)	is	shown	as	a	function	of	solar	zenith	angle	(SZA).	The	standard	1168	
deviation	was	calculated	over	𝟓×𝟓-element	windows	over	uniform	bodies	of	water	from	various	OLI	scenes	1169	
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(N=75).	The	product	noise	remains	relatively	stable	for	low	to	medium	range	SZA	but	increases	beyond	1170	
SZA=𝟓𝟖°.	1171	


